Zydus Cadila announced on June 5, 2013, the approval by the Drug Controller General of India (DCGI) of Saroglitazar (ZYH1), or Lipaglyn™. The drug has been approved for launch in India for the treatment of diabetic dyslipidemia or hypertriglyceridemia in patients with type II diabetes not controlled by statins alone [1].

Lipaglyn™ is the first glitazar to be approved in the world, and is the first NCE discovered and developed indigenously by an Indian company. The drug originates from a research program initiated at Zydus Cadila in 2000, and an IND submission in 2004 after extensive structure-activity relationship studies and preclinical characterization.

The compound belongs to the class of ‘glitazars’, dual peroxisome proliferator-activated receptor (PPAR) agonists with affinity towards both PPARα and PPARγ [2] [3]. According to Zydus Cadila [1], Saroglitazar has a predominant affinity for the PPARα isoform, and a moderate affinity for PPARγ, and has shown beneficial effects on lipids and glycemic controls without side effects. At a dose of 4 mg once daily, it reduces triglycerides and LDL cholesterol, it increases HDL cholesterol, and also shows a reduction in Fasting Plasma Glucose and glycosylated hemoglobin.

Chemical structure of Saroglitazar

Saroglitazar, or (2S)-2-ethoxy-3-[4-(2-(2-methyl-5-[4-(methylsulfanyl)phenyl]-1H-pyrrol-1-yl)ethoxy) phenyl]propanoic acid, has been described in patent application WO 03/009841 A1, with a priority date of July 26, 2001, for its Indian patent application (711/MUM/2001).
The class of ‘glitazars’ also includes compounds such as:

- Hoffmann-La Roche’s Aleglitazar (R1439), currently in Ph III trials [4]

- Bristol-Myers Squibb’s Muraglitazar (BMS-298585), which had completed Ph III clinical trials, but was discontinued in 2006

- AstraZeneca’s Tesaglitazar, also discontinued after Ph III trials in 2007

With 20 discovery research programs and a biosimilar pipeline, Zydus Cadila’s current NCE R&D pipeline, largely focused on diabetes and metabolic disorders, includes six compounds in Ph I and Ph II clinical stages [5].

Table: Zydus Cadila NCE pipeline

<table>
<thead>
<tr>
<th>Project</th>
<th>Target</th>
<th>Indication</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZYH7</td>
<td>PPARα agonist</td>
<td>Dyslipidemia</td>
<td>Ph II</td>
</tr>
<tr>
<td>ZYD1</td>
<td>GLP-1 agonist</td>
<td>Diabetes, obesity</td>
<td>Ph I</td>
</tr>
<tr>
<td>ZYROG1</td>
<td>Oral GLP-1 agonist</td>
<td>Diabetes, obesity</td>
<td>Ph I</td>
</tr>
<tr>
<td>ZYGK1</td>
<td>Glucokinase activator</td>
<td>Diabetes</td>
<td>Ph I</td>
</tr>
<tr>
<td>ZYG19</td>
<td>GPR-119 agonist</td>
<td>Diabetes</td>
<td>Ph I</td>
</tr>
<tr>
<td>ZYPH0907</td>
<td>Oral PTH agonist</td>
<td>Osteoporosis</td>
<td>Ph I</td>
</tr>
</tbody>
</table>
Additional Zydus Cadila compounds had progressed into clinical studies, but have been abandoned, such as:

- ZYI1, a multi-modal compound for the treatment of pain,
- ZYO1, a CB-1 antagonist for the treatment of obesity and diabetes
- ZYH2, another dual PPARα/PPARγ agonist for diabetes
- ZYT1, a Thyroid hormone receptor beta agonist for the treatment of dyslipidemia

Zydus Cadila invests over 7% of its turnover in research. The group employs over 15,000 people worldwide, and at the group’s state-of-the-art research arm, the Zydus Research Centre, located in Ahmedabad, over 400 research scientists are engaged in NCE research alone [1].

Bibliography:

June 11, 2013
More information on drug discovery in India is available from:

Edmond Differding, PhD
Managing Director
Differding Consulting s.p.r.l.
Route de Bloisy, 55
B-1348 Louvain-la-Neuve
Belgium
Email: edmond@differding.com
Mobile: +32-474-41.24.64